Fractional contributions of microscopic diffusion mechanisms for common dopants and self-diffusion in silicon

نویسندگان

  • Ant Ural
  • Peter B. Griffin
  • James D. Plummer
چکیده

An identical set of thermal oxidation and nitridation experiments has been performed for four common dopants and self-diffusion in Si. Selectively perturbing the equilibrium point-defect concentrations by these surface reactions is a powerful tool for identifying the relative importance of the various atomic-scale diffusion mechanisms. We obtain bounds on the fractional contributions of the self-interstitial, vacancy, and concerted exchange mechanisms for arsenic, boron, phosphorus, antimony, and self-diffusion in Si at temperatures of 1100 and 1000 °C. These bounds are found by simultaneously solving a system of equations making only very conservative assumptions. The validity of common approximations found in previous work and their effects on the results are also analyzed in detail. We find that B and P diffuse by a self-interstitial mechanism, whereas Sb diffusion is almost exclusively vacancy mediated. As and self-diffusion, on the other hand, exhibit evidence for a dual vacancy-interstitial mechanism with the possibility of some concerted exchange component. © 1999 American Institute of Physics. @S0021-8979~99!05109-9#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of diffusion equation for point defects

An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...

متن کامل

Modeling Fermi Level Effects in Atomistic Simulations

In this work, variations in electron potential are incorporated into a Kinetic Lattice Monte Carlo (KLMC) simulator and applied to dopant diffusion in silicon. To account for the effect of dopants, the charge redistribution induced by an external point charge immersed in an electron (hole) sea is solved numerically using the quantum perturbation method. The local carrier concentrations are then...

متن کامل

EFFECT OF Si ANTIOXIDANT ON THE RATE OF OXIDATION OF CARBON IN MgO- C REFRACTORY

Progressive conversion/shrinking core (PC-SC) models of constant-size cylinders were exploited to interpret the decarburization reactions of MgO-C-Si bricks heated up under blown air. Chemical adsorption/solid (or pore) diffusion mechanisms governed the reaction rate. With 5% silicon, chemical adsorption vanished at 1000 and 1100°C. The oxidation rate lowered then with temperature. This was due...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999